请选择时期:
怀孕准备 怀孕 分娩 宝宝0-1岁 宝宝1-3岁 宝宝3-6岁

正弦定理如何描述 正弦定理百科

来源: 最后更新:23-01-10 12:01:30

导读:1、正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D

1、正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为直径)。

2、历史上,正弦定理的几何推导方法丰富多彩。根据其思路特征,主要可以分为两种。

3、第一种方法可以称为 “同径法 ”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷格蒙塔努斯所采用。“同径法 ”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。纳绥尔丁同时延长两个内角的对边,构造半径同时大于两边的圆。雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径法”。

4、18世纪初,“同径法”又演化为“直角三角形法”,这种方法不需要选择并作出圆的半径,只需要作出三角形的高线,利用直角三角形的边角关系,即可得出正弦定理。19世纪,英国数学家伍德豪斯开始统一取R=1,相当于用比值来表示三角函数,得到今天普遍采用的 “作高法”。

5、第二种方法为“外接圆法”,最早为16世纪法国数学家韦达所采用。韦达没有讨论钝角三角形的情形,后世数学家对此作了补充。

标签: 正弦定理如何描述  

免责声明:本文系转载,版权归原作者所有;旨在传递信息,其原创性以及文中陈述文字和内容未经本站证实。

本文地址:http://www.bbbaike.com/baike/zonghe/1183881.html

声明: 本站文章均来自互联网,不代表本站观点 如有异议 请与本站联系 联系邮箱:kefu#bbbaike.com (请把#替换成@)

关于我们 | 广告服务 | 网站合作 | 免责声明 | 联系我们| 网站地图

© 2022-2024 宝宝百科网 all rights reserved. 沪ICP备2023005727号-4