请选择时期:
怀孕准备 怀孕 分娩 宝宝0-1岁 宝宝1-3岁 宝宝3-6岁

为什么正多面体只有5种(为什么多面体至少有四个面)

来源: 最后更新:23-03-20 04:34:47

导读:1、证明:设正多面体的每个面是正n边行,每个顶点是m条棱,于是,棱数E应是F(面数)与n的积的一半,即Nf=2E(1式)。同时,E应是V(顶点数)与M的积的一半,即mV=2E(2式)。由1式、2式,得,F=2E/n, V

1、证明:设正多面体的每个面是正n边行,每个顶点是m条棱,于是,棱数E应是F(面数)与n的积的一半,即Nf=2E(1式)。同时,E应是V(顶点数)与M的积的一半,即mV=2E(2式)。由1式、2式,得,F=2E/n, V=2E/m,代入欧拉公式V+F-E=2,有2E/m+2E/n-E=2整理后,得1/m+1/n=1/2+1/E。

2、由于E是正整数,所以1/E>0。因此1/m+1/n>1/2(3式),3式说明m,n不能同是大于3,否则3式不成立。另一方面,由于m和n的意义(正多面体一个顶点处的棱数与多边形的边数)知,m>=3且n>=3。因此m和n至少有一个等于3。

3、当m=3时,因为1/n>1/2-1/3=1/6,n又是正整数,所以n只能是3,4,5。

4、同理n=3,m也只能是3,4,5,所以n m 类型,3 3 正四面体,4 3 正六面体,3 4 正八面体,5 3 正十二面体,3 5 正二十面体,由于上述5种多面体确实可以用几何方法作出,而不可能有其他种类的正多面体,所以正多面体只有5种。

标签: 为什么正多面体只有5种  

免责声明:本文系转载,版权归原作者所有;旨在传递信息,其原创性以及文中陈述文字和内容未经本站证实。

本文地址:http://www.bbbaike.com/baike/zonghe/1360158.html

声明: 本站文章均来自互联网,不代表本站观点 如有异议 请与本站联系 联系邮箱:kefu#bbbaike.com (请把#替换成@)

关于我们 | 广告服务 | 网站合作 | 免责声明 | 联系我们| 网站地图

© 2022-2024 宝宝百科网 all rights reserved. 沪ICP备2023005727号-4