请选择时期:
怀孕准备 怀孕 分娩 宝宝0-1岁 宝宝1-3岁 宝宝3-6岁

kmeans原理 kmeans作用

来源: 最后更新:22-07-18 07:52:32

导读:kmeans原理,输入:聚类个数k,以及包含 n个数据对象的数据库。输出:满足方差最小标准的k个聚类。

kmeans原理如下:

  

  输入:聚类个数k,以及包含 n个数据对象的数据库。输出:满足方差最小标准的k个聚类。

  

  K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法。包括初始化优化K-Means++, 距离计算优化elkan K-Means算法和大数据情况下的优化Mini Batch K-Means算法。

  

  

标签: 原理  标签  简介  kmeans  

免责声明:本文系转载,版权归原作者所有;旨在传递信息,其原创性以及文中陈述文字和内容未经本站证实。

本文地址:http://www.bbbaike.com/baike/zonghe/406467.html

声明: 本站文章均来自互联网,不代表本站观点 如有异议 请与本站联系 联系邮箱:kefu#bbbaike.com (请把#替换成@)

关于我们 | 广告服务 | 网站合作 | 免责声明 | 联系我们| 网站地图

© 2022-2024 宝宝百科网 all rights reserved. 沪ICP备2023005727号-4